Process data based estimation of tool wear on punching machines using TCN-Autoencoder from raw time-series information

Author:

Asahi Shota,Karadogan Celalettin,Tamura Satoshi,Hayamizu Satoru,Liewald Mathias

Abstract

Abstract Tracking the wear states of tools on punching machines is necessary to reduce scrap rates. In this paper, we propose a method to estimate wear state of punches using Temporal Convolutional Network Autoencoder (TCN-Autoencoder), one of the deep learning techniques for learning time-series information with convolutional architecture. Approach involves inputting raw time-series information, such as sensor, vibration and audio data, into TCN-Autoencoder, and calculating the reconstruction error between the output and the input data. The reconstruction error is used as “anomaly score” and indicates the distance from the normal state. By training TCN-Autoencoder only with data annotated as “normal” state, the reconstruction error becomes larger when inputting abnormal state data, which corresponds the wear state of the punch. Performance is evaluated on experimental measurement data that spans various wear states of the punch. The results showed our model can estimate anomalies faster than the conventional machine-learning-based anomaly estimation method, while maintaining the high estimation accuracy. This is due to TCN-Autoencoder being able to learn from both frequency and time domain.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3