Abstract
AbstractThe wear state of the punch in sheet-metal stamping processes cannot be directly observed, necessitating the use of indirect methods to infer its condition. Past research approaches utilized a plethora of machine learning models to infer the punch wear state from suitable process signals, but have been limited by the lack of industrial-grade process setups and sample sizes as well as their insufficient interpretability. This work seeks to address these limitations by proposing the sheared surface of the scrap web as a proxy for the punch wear and modeling its quality from acoustic emission signals. The experimental work was carried out in an industrial-grade fine blanking process setting. Evaluation of the model performances suggests that the utilized regression models are capable of modeling the relationship between acoustic emission signal features and sheared surface quality of the scrap webs. Subsequent model inference suggests adhesive wear on the punch as a root cause for the sheared surface impairment of the scrap webs. This work represents the most extensive modeling effort on indirect punch wear monitoring in sheet-metal stamping both from a model prediction and model inference perspective known to the authors.
Funder
Bundesministerium für Wirtschaft und Energie
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献