Diagnostics of welding process based on thermovision images using convolutional neural network

Author:

Piecuch G,Madera M,Żabiński T

Abstract

Abstract Arc welding used at automated workstations in large-scale production systems requires continuous assessment of welded joints quality. There are known classical methods and diagnostic systems based on the observation of welding current or arc voltage, while along with the development of deep learning methods, the interest in diagnostics by the use of images is increasing. The article presents results of research conducted for the process of joining two stainless steel materials (AISI 304 and AISI 316L) of various thicknesses by means of a fillet weld, aimed at developing a method of diagnosing the welding process using a convolutional neural network. Infrared images recorded using two thermovision cameras mounted on a test stand were used to diagnose the process. EWM Tetrix 351 welding machine operating in TIG technology was used as an executive element. Welds were made at different currents and arc welding voltages, as well as at different welding speeds, which had a direct impact on its quality. The solution for binary classification of welded joints (correct or incorrect) with accuracy above 98% was achieved.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3