A Particle Swarm Optimization Algorithm Based on Dynamic Adaptive and Chaotic Search

Author:

Zhuo Wei,Yu Xuejun

Abstract

Abstract Although the particle swarm optimization algorithm has the advantages of fast convergence, easy to use and strong versatility, the algorithm also has the defects of low search precision, poor local search ability and easy to fall into local optimal solution. Therefore, this paper proposes a particle swarm optimization algorithm based on dynamic adaptive and chaotic search to ensure the global search ability of the particle swarm while avoiding falling into the local optimal solution. The experimental results show that compared with the comparison algorithm, the DACSPSO has stronger global search ability, higher convergence precision, and can effectively avoid premature convergence.

Publisher

IOP Publishing

Subject

General Medicine

Reference12 articles.

1. Particle swarm optimization[C];Kennedy,1995

2. Adaptive particle swarm optimization;Zhan;IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2009

3. An improved particle swarm optimization for feature selection [J];Liu;Journal of Bionic Engineering,2011

4. A Novel Concurrent Particle Swarm Optimization [A];Baskar,2004

5. Automatic generation of path test data based on GA-PSO algorithm [J];Hong;Journal of Computer Applications,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3