Prediction of permeability of highly heterogeneous hydrocarbon reservoir from conventional petrophysical logs using optimized data-driven algorithms

Author:

Sheykhinasab Amirhossein,Mohseni Amir Ali,Barahooie Bahari Arash,Naruei Ehsan,Davoodi ShadfarORCID,Aghaz Aliakbar,Mehrad MohammadORCID

Abstract

AbstractPermeability is an important parameter in the petrophysical study of a reservoir and serves as a key tool in the development of an oilfield. This is while its prediction, especially in carbonate reservoirs with their relatively lower levels of permeability compared to sandstone reservoirs, is a complicated task as it has larger contributions from heterogeneously distributed vugs and fractures. In this respect, the present research uses the data from two wells (well A for modeling and well B for assessing the generalizability of the developed models) drilled into a carbonate reservoir to estimate the permeability using composite formulations based on least square support vector machine (LSSVM) and multilayer extreme learning machine (MELM) coupled with the so-called cuckoo optimization algorithm (COA), particle swarm optimization (PSO), and genetic algorithm (GA). We further used simple forms of convolutional neural network (CNN) and LSSVM for the sake of comparison. To this end, firstly, the Tukey method was applied to identify and remove the outliers from modeling data. In the next step, the second version of the nondominated sorting genetic algorithm (NSGA-II) was applied to the training data (70% of the entire dataset, selected randomly) to select an optimal group of features that most affect the permeability. The results indicated that although including more input parameters in the modeling added to the resultant coefficient of determination (R2) while reducing the error successively, yet the slope of the latter reduction got much slow as the number of input parameters exceeded 4. In this respect, petrophysical logs of P-wave travel time, bulk density, neutron porosity, and formation resistivity were identified as the most effective parameters for estimating the permeability. Evaluation of the results of permeability modeling based on root-mean-square error (RMSE) and R2 shed light on the MELM-COA as the best-performing model in the training and testing stages, as indicated by (RMSE = 0.5600 mD, R2 = 0.9931) and (RMSE = 0.6019 mD, R2 = 0.9919), respectively. The generalizability assessment conducted on the prediction of permeability in well B confirmed the MELM-COA can provide reliable permeability predictions by achieving an RMSE of 0.9219 mD. Consequently, the mentioned methodology is strongly recommended for predicting the permeability with high accuracy in similar depth intervals at other wells in the same field should the required dataset be available.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3