Application of fuzzy logic for power change rate constraint in core power control at Reaktor TRIGA PUSPATI

Author:

Minhat Mohd Sabri,Mohd Subha Nurul Adilla,Hassan Fazilah,Ahmad Anita

Abstract

Abstract The 1MWth Reaktor TRIGA PUSPATI (RTP) in Malaysia Nuclear Agency has been in operation more than 37 years. The existing core power control uses a conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output stable and operate within the acceptable error bands for the safety demand of the RTP. At present, the power tracking performance of the system could be considered unsatisfactory where constant gains of power change rate constraint and control rod speed constraint are used. Hence, a study of a new power change rate constraint design to achieve safe control rod speed range is conducted to improve the current performance. In this paper, a new power change rate constraint (PCRC) method using fuzzy logic is proposed to control the core power. The Takagi-Sugeno (T-S) type Fuzzy model is chosen due to its capability to work well with linear controller and making the computational control algorithm efficient. The model for core power control consists of mathematical models of the reactor core, FCA, and control rods selection algorithm. The mathematical models of the reactor core are based on point kinetics model, thermal-hydraulic models and reactivity models. The performance of power tracking and actuation signal for control rod drive input are compared between the conventional PCRC (cPCRC) and Fuzzy PCRC using MATLAB. In conclusion, the proposed Fuzzy PCRC has satisfactory performance in core power tracking for controlling the nuclear reactor with high reliability and safety.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid MPC-P controller for the core power control system at TRIGA reactor;Journal of Process Control;2023-02

2. Model predictive and fuzzy logic controllers for reactor power control at Reaktor TRIGA PUSPATI;IOP Conference Series: Materials Science and Engineering;2022-02-01

3. Hybrid Core Power Control Using PI, Fuzzy and MPC for TRIGA Nuclear Reactor;Lecture Notes in Electrical Engineering;2022

4. An enhanced fault diagnosis in nuclear power plants for a digital twin framework;2021 International Conference on Electrical, Computer and Energy Technologies (ICECET);2021-12-09

5. A multipronged core power control strategy for Reaktor TRIGA PUSPATI;IOP Conference Series: Materials Science and Engineering;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3