A multipronged core power control strategy for Reaktor TRIGA PUSPATI

Author:

Minhat Mohd Sabri,Subha Nurul Adilla Mohd,Hassan Fazilah,Husain Abdul Rashid,Ahmad Anita,Ismail Fatimah Sham,Hamzah Norikhwan

Abstract

Abstract At present, the power tracking performance of nuclear Reaktor TRIGA PUSPATI (RTP) is considered unsatisfactory performance due to relatively long settling time during transient and a chattering noise during steady-state power output. Application of the conventional Feedback Control Algorithm (FCA) as a power control technique is proven to be inadequate to keep the core power output stable and within tight multiple parameter constraints for the safety demand of the RTP. Hence, the present study proposed a multipronged core power control strategy improvement through manipulation of the current Control Rod Selection Algorithm (CRSA), Control Rod Speed Design (CRSD), and Power Change Rate Constraint (PCRC) which are part of the core power control design. In this paper, the profiling and analysis of the multipronged core power control strategy are presented. The model for core power control consists of mathematical models of the reactor core, FCA controller, and a series of multipronged models. The mathematical models of the reactor core are based on the point kinetics model, thermal-hydraulic model, and reactivity model. The reactor model is integrated with the FCA controller and a combination of CRSA-CRSD-PCRC models. The power tracking performance of the proposed control strategy and conventional FCA is compared via computer simulation. Overall, the results show the multipronged FCA offers a wider options for optimum operation of the TRIGA reactor.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model predictive and fuzzy logic controllers for reactor power control at Reaktor TRIGA PUSPATI;IOP Conference Series: Materials Science and Engineering;2022-02-01

2. Hybrid Core Power Control Using PI, Fuzzy and MPC for TRIGA Nuclear Reactor;Lecture Notes in Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3