Investigation of loose contact oxidation kinetic analysis on diesel particulate filter’s wall surface using non-isothermal TGA technique

Author:

Zin Win Swe,Karin Preechar,Phairote Watanyoo,Chollacoop Nuwong,Saisirirat Peerawat,Hanamura Katsunori

Abstract

Abstract Carbonaceous soot particles emitted from diesel engines are dangerous to human health because of its carcinogenic activity and can penetrate into lungs. In order to control soot emissions, diesel particulate filters (DPFs) are widely used to meet progessively stringent regulations of vehicle emissions limits. In this article, the characterization of conventional DPF microstructure was briefly investigated by scanning electron microscopy (SEM) addition with energy dispersive X-ray analysis (EDX) and X-ray fluorescence analysis (XRF). Non-isothermal oxidation mechanism of soot on conventional DPF was carried out from thermogravimetric analysis (TGA) under air atmosphere with the flow rate of 40ml/min at the heating rates of 5, 10, and 15°C/min. The kinetic parameters were calculated by three non-isothermal model-free methods. The average value of apparent activation energy obtained by Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Kissinger (K) were 77.02, 65.29 and 70.48 kJ/mol, respectively at different heating rates. The average results got from this work indicate that non-isothermal experiments were quite low compared to kinetics parameters estimated by the isothermal method from previous research.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of emulsifiers on the thermal stability of firework propellants;Journal of Thermal Analysis and Calorimetry;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3