A BP Neural Network Modeling Method Based on Global Error for the Hysteresis of Piezoelectric Actuator

Author:

Wang Yanyan,Guo Hai

Abstract

Abstract Piezoelectric actuator (PZT) is used widely in nano positioning, nano measurement and nano mechanics. However, its hysteresis, creep and nonlinearity affect the positioning accuracy seriously, especially the hysteresis. The paper proposes a BP neural network modeling method based on global error to model the hysteresis of the PZT. The network contains input, hidden and output layers. Its training goal is based on global errors. And the network could adjust the connection weight of the network dynamically according to different inputs till the global errors reduce to the threshold. Experiments prove that the method could fit the hysteresis curves of the PZT well. And the training errors could be controlled under 0.05.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

1. Measurement on driving characteristic of a piezoelectric actuator based on the sub pixel of micro vision;Liu;Chinese Journal of Scientific Instrument,2015

2. Hysteresis property of tip-tilt-piston micromirror based on tilt-and lateral shift-free piezoelectric unimorph actuator;Liu;Integrated Ferroelectrics,2014

3. Creep modelling and identification for piezoelectric actuators based on fractional-order system;Liu;Mechatronics,2013

4. Experimental testing of applicability of the Preisach hysteresis model to superconductors;Friedman;Journal of Applied Physics,1994

5. Models of magnetic hysteresis based on play and stop hysterons;Bobbio;IEEE Transactions on Magnetics,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3