Combining Deep Neural Network and Fourier Series for Tourist Arrivals Forecasting

Author:

Shabri Ani,Samsudin Ruhaidah,Yusoff Yusliza

Abstract

Abstract Accurate tourist arrivals forecasting is essential for governments and the private sector to formulate policies and allocate funds more effectively. In this paper, the modeling of tourist arrivals time series data was introduced in a hybrid modeling that combines the deep neural network (DNN) with the Fourier series method. The proposed model approach applies the DNN to get the forecasted value and then employs the Fourier series to fit the residual error produced by the DNN. To verify the accurate prediction of the proposed model, different single models such as ARIMA, ANN and DNN, and modified ARIMA and ANN models using Fourier series are investigated. Historical data on monthly tourist arrivals to Langkawi Island with high trend and strong seasonality is used to compare the efficiency of the proposed model. A series of studies demonstrates that the performance of the single model can be further improved by taking into account the residual modification by Fourier series. The result shows that the proposed model is capable of forecasting tourist arrival series with higher reliability than other models used.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3