Roughness Modeling for Composite Pavements using Machine Learning

Author:

Barros Rulian,Yasarer Hakan,Uddin Waheed,Sultana Salma

Abstract

Abstract A large number of paved highway surfaces comprises composite pavements as a result of concrete pavement rehabilitation that uses an asphalt overlay on top of the concrete surface. Annually, billions of dollars are spent on the maintenance and rehabilitation of road networks. Roughness is one of the several indicators of road conditions used to make objective decisions related to road network management. The irregularities in the pavement surface affecting the ride quality of road users can be described by a standard roughness index defined as the International Roughness Index (IRI). Roughness prediction models can identify rehabilitation needs, analyze rehabilitation effects, and estimate future pavement conditions to implement different Maintenance and Rehabilitation (M&R) activities to extend the pavement life cycle and provide a smooth surface for road users. This study intended to develop pavement performance models to predict roughness for asphalt overlay on concrete pavement sections using the Long-Term Performance Pavement (LTPP) program database. Artificial Neural Networks (ANNs) approach was used to develop roughness prediction models. A total of 52 pavement sections with 592 data points were analyzed. Five models were developed, and the best performing model, Model 5 was found with an average square error (ASE) of 0.0023, mean absolute relative error (MARE) of 12.936, and coefficient of determination (R2) of 0.88. Model 5 utilized one output variable (IRIMean) and 14 input variables (i.e., Initial IRIMean, Age, Wet-Freeze, Wet Non-Freeze, Dry-Freeze, Dry Non-Freeze, Asphalt Thickness, Concrete Thickness, CN Code, ESAL, Annual Air Temperature, Freeze Index, Freeze-Thaw, and Precipitation). The ANN model structure utilized for Model 5 was 14-9-1 (14 inputs, 9 hidden nodes, and 1 output). Environmental impacts and traffic repetitions can cause severe damage to the pavement if timely maintenance and rehabilitation are not performed. By considering the effects of the M&R history of the pavement, it is possible to obtain realistic prediction models for future planning. Therefore, the developed ANN roughness performance models in this paper can be used as a prediction tool for IRI values and guide decision-makers to develop a better M&R plan. Local and state agencies can use available historical traffic and climatological data in the developed models to estimate the change in IRI values. Utilizing these prediction models eliminates time-consuming data collection and post-processing, and consequently, a cost reduction. This low-cost tool will improve the condition assessment and effective M&R scheduling.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. Assessment of Composite Pavement Performance by Survival Analysis;Chen;Journal of Transportation Engineering.,2015

2. International Roughness Index Prediction Model for Thin Hot Mix Asphalt Overlay Treatment of Flexible Pavements;Qian;Transportation Research Record,2018

3. Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data;Solatifar;Journal of Rehabilitation in Civil Engineering,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3