JINTRAC integrated simulations of ITER scenarios including fuelling and divertor power flux control for H, He and DT plasmas

Author:

Militello Asp E.ORCID,Corrigan G.,da Silva Aresta Belo P.,Garzotti L.ORCID,Harting D.M.,Köchl F.,Parail V.,Cavinato M.,Loarte A.ORCID,Romanelli M.ORCID,Sartori R.

Abstract

Abstract We have modelled self-consistently how to most efficiently fuel ITER hydrogen (H), helium (He) and deuterium–tritium (DT) plasmas with gas and/or pellets with the integrated core and 2D SOL/divertor suite of codes JINTRAC. This paper presents the first overview of full integrated simulations from core to divertor of ITER scenarios following their evolution from X-point formation, through L-mode, L–H transition, steady-state H-mode, H–L transition and current ramp-down. Our simulations respect all ITER operational limits, maintaining the target power loads below 10 MW m−2 by timely gas fuelling or Ne seeding. For the pre-fusion plasma operation (PFPO) phase our aim was to develop robust scenarios and our simulations show that commissioning and operation of the ITER neutral beam (NB) to full power should be possible in 15 MA/5.3 T L-mode H plasmas with pellet fuelling and 20 MW of ECRH. For He plasmas gas fuelling alone allows access to H-mode at 7.5 MA/2.65 T with 53–73 MW of additional heating, since after application of NB and during the L–H transition, the modelled density build-up quickly reduces the NB shine-through losses to acceptable levels. This should allow the characterisation of ITER H-mode plasmas and the demonstration of ELM control schemes in PFPO-2. In ITER DT plasmas we varied the fuelling and heating schemes to achieve a target fusion gain of Q = 10 and to exit the plasma from such conditions with acceptable divertor loads. The use of pellets in DT can provide a faster increase of the density in L-modes, but it is not essential for unrestricted NB operation due to the lower shine-through losses compared to H. During the H–L transition and current ramp-down, gas fuelling and Ne seeding are required to keep the divertor power loads under the engineering limits but accurate control over radiation is crucial to prevent the plasma becoming thermally unstable.

Funder

Engineering and Physical Sciences Research Council

Fusion for Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3