Efficient training sets for surrogate models of tokamak turbulence with Active Deep Ensembles

Author:

Zanisi L.,Ho A.ORCID,Barr J.,Madula T.,Citrin J.ORCID,Pamela S.,Buchanan J.,Casson F.J.ORCID,Gopakumar V.ORCID,

Abstract

Abstract Model-based plasma scenario development lies at the heart of the design and operation of future fusion powerplants. Including turbulent transport in integrated models is essential for delivering a successful roadmap towards operation of ITER and the design of DEMO-class devices. Given the highly iterative nature of integrated models, fast machine-learning-based surrogates of turbulent transport are fundamental to fulfil the pressing need for faster simulations opening up pulse design, optimization, and flight simulator applications. A significant bottleneck is the generation of suitably large training datasets covering a large volume in parameter space, which can be prohibitively expensive to obtain for higher fidelity codes. In this work, we propose ADEPT (Active Deep Ensembles for Plasma Turbulence), a physics-informed, two-stage Active Learning strategy to ease this challenge. Active Learning queries a given model by means of an acquisition function that identifies regions where additional data would improve the surrogate model. We provide a benchmark study using available data from the literature for the QuaLiKiz quasilinear transport model. We demonstrate quantitatively that the physics-informed nature of the proposed workflow reduces the need to perform simulations in stable regions of the parameter space, resulting in significantly improved data efficiency compared to non-physics informed approaches which consider a regression problem over the whole domain. We show an up to a factor of 20 reduction in training dataset size needed to achieve the same performance as random sampling. We then validate the surrogates on multichannel integrated modelling of ITG-dominated JET scenarios and demonstrate that they recover the performance of QuaLiKiz to better than 10%. This matches the performance obtained in previous work, but with two orders of magnitude fewer training data points.

Funder

EUROfusion

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3