Effects of elastic softening and helium accumulation kinetics on surface morphological evolution of plasma-facing tungsten

Author:

Chen Chao-ShouORCID,Dasgupta DwaipayanORCID,Weerasinghe AsankaORCID,Wirth Brian D.ORCID,Maroudas DimitriosORCID

Abstract

Abstract Based on a continuous-domain model, capable of accessing the spatiotemporal scales relevant to fuzz formation on the surface of plasma-facing component (PFC) tungsten, we report self-consistent simulation results that elucidate the effects of elastic softening and helium (He) accumulation kinetics on the surface morphological response of PFC tungsten. The model accounts for the softening of the elastic moduli in the near-surface region of PFC tungsten, including both thermal softening at high temperature and softening due to He accumulation upon He implantation. The dependence of the elastic moduli on the He content follows an exponential scaling relation predicted by molecular-dynamics simulations, while the He content in the near-surface region of PFC tungsten evolves according to a first-order saturation kinetics, consistent with experimental and simulation results reported in the literature. We establish that this elastic softening accelerates both nanotendril growth on the PFC surface and the onset of fuzz formation. We also explore the role of the rate of He accumulation to a saturation level in the near-surface region of irradiated tungsten in the onset of fuzz formation. For PFC tungsten surfaces such as W(110) where, under typical irradiation conditions, the characteristic time scale for stress-driven surface diffusion is comparable to the characteristic time scale for He accumulation, we find that accelerating the rate of He accumulation accelerates the growth rate of nanotendrils emanating from the surface. Additionally, we present a systematic parametric study of the PFC surface morphological response to explore its dependence on the He accumulation kinetics that is controlled by the irradiation conditions for low-energy implantation. Finally, we introduce an incubation time for nanotendril growth on the PFC surface, a concept equivalent to that of incubation fluence discussed in the literature, to predict and explain the minimum exposure time required to observe fuzz formation on PFC tungsten surfaces.

Funder

UT-Battelle

Fusion Energy Sciences

U.S. Department of Energy, Office of Advanced Scientific Computing Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3