Effects of surface vacancy-adatom pair formation on PFC tungsten surface morphological response

Author:

Chen Chao-ShouORCID,Dasgupta DwaipayanORCID,Weerasinghe AsankaORCID,Hammond Karl D.ORCID,Wirth Brian D.ORCID,Maroudas DimitriosORCID

Abstract

Abstract We report a simulation study of the effect of He-irradiation-induced surface vacancy-adatom pair formation on the surface morphological evolution of plasma-facing component (PFC) tungsten and examine a number of factors that impact such evolution. Our analysis is based on self-consistent dynamical simulations according to an atomistically-informed, continuum-scale surface evolution model that has been developed following a hierarchical multiscale modeling strategy and can access the spatiotemporal scales of relevance to fuzz formation. The model accounts for the flux of surface adatoms generated as a result of the surface vacancy-adatom pair formation effect upon He implantation, which contributes to the anisotropic growth of surface nanostructural features due to the different rates of adatom diffusion along and across step edges of islands on the tungsten surface. We have carried out atomic-scale computations of optimal diffusion pathways along and across island step edges on the W(110) surface and calculated Ehrlich–Schwoebel (ES) barriers in adatom diffusion along and across such step edges. This aspect of surface adatom diffusion contributes to anisotropic surface atomic fluxes, terrace and step diffusive currents, and has been incorporated into our PFC surface evolution model, which predicts the formation of preferentially aligned nanoridge stripe patterns on the PFC surface. We establish that these anisotropic diffusive currents accelerate nanotendril growth on the PFC surface and the onset of surface nanostructure pattern formation. We also explore systematically the dependence of the PFC surface morphological response on the surface temperature and He ion incident flux, characterize in detail the resulting surface topographies and growth kinetics, and compare the predicted surface morphologies with experimental observations. Our simulation predictions for the emerging surface nanostructure patterns under certain plasma exposure conditions are consistent with experimental findings in the literature.

Funder

Fusion Energy Sciences

Oak Ridge National Laboratory

U.S. Department of Energy

UT-Battelle

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3