Comparison of divertor behavior and plasma confinement between argon and neon seeding in EAST

Author:

Li KedongORCID,Yang Zhongshi,Wang HuiqianORCID,Xu GuoshengORCID,Yuan Qiping,Guo Houyang,Eldon David,Hyatt Alan,Humphreys David,Chen Meiwen,Wu KaiORCID,Liu Jianbin,He TaoORCID,Yang QingquanORCID,Lin XinORCID,Xu JichanORCID,Meng LingyiORCID,Ding Fang,Chen XiahuaORCID,Luo YuORCID,Wu Jinhua,Duan Yanmin,Luo Guang-NanORCID,Wang LiangORCID

Abstract

Abstract The exhaust of excessively high heat and particle fluxes on the divertor target is crucial for EAST long-pulse operation. In the recent EAST experiments, stable partial energy detachment around the upper outer strike point with H 98,y2 ∼ 1 was achieved with either Ne or Ar seeding from the upper outer divetor target in the upper single null configuration with ITER-like tungsten divertor. With either Ar or Ne seeding, the electron temperature around the upper outer strike point (T et,UOSP) was maintained at around 5 eV, the peak temperature of divertor target surface around the upper outer strike point (T div,UO) decreased significantly, and material sputtering was well suppressed. It was observed that there was less Ar seeding needed for partial energy detachment onset than Ne seeding, which shows that Ar is more efficient in the cooling of T et on the upper outer divertor than Ne. However, there was no detachment on the upper inner divertor with T et around strike point (T et,UISP) remaining >10 eV with either Ar or Ne seeding from the upper outer divertor. Accompanied with the disappearance of double peak phenomenon of ion flux density on the upper inner divertor target (j s,UI), the peak T div,UI around the strike point increased to around 300 °C. Although the heat flux on the upper inner divertor target (q t,UI) is still in the acceptable level, either Ar or Ne seeding only from the upper outer divertor target is not enough to protect the upper inner divertor target from sputtering under current EAST conditions. On the other hand, Ar seeding always causes confinement degradation in the partial energy detachment state. It was observed that there is a slight confinement improvement (∼10%) with Ne seeding, which may be due to density peaking, dilution effects and stabilization of the ion temperature gradient mode.

Funder

National Key Research & Development Program of China

Special Research Assistant Funding of CAS

Key Research Program of Frontier Sciences, CAS

AHNSF

National Natural Science Foundation of China

Chinese Scholarship Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3