Optimizing the HSX stellarator for microinstability by coil-current adjustments

Author:

Gerard M.J.ORCID,Geiger B.ORCID,Pueschel M.J.ORCID,Bader A.ORCID,Hegna C.C.ORCID,Faber B.J.ORCID,Terry P.W.ORCID,Kumar S.T.A.ORCID,Schmitt J.C.ORCID

Abstract

Abstract The optimization of helically symmetric experiment (HSX) for reduced microinstability has been achieved by examining a large set of configurations within a neighborhood of the standard operating configuration. This entailed generating a database of more than 106 magnetic-field configurations for HSX by varying the currents in external coils. Using a set of volume-averaged metrics and gyrokinetic simulations, this database has helped to identify a set of configurations that can be used to regulate trapped-electron-mode stability in HSX. This set of configurations is also found to correlate flux-surface elongation and triangularity with an increase in magnetic-well depth, an increase in rotational transform, and low neoclassical heat-flux relative to the standard quasi-helically-symmetric configuration. These results demonstrate sensitivity of plasma behavior in response to changes in a 3D magnetic field to both neoclassical and gyrokinetic models, and the experimental potential in HSX to explore turbulence optimization. This perturbative optimization approach is not unique to HSX, and can readily be deployed on existing fusion devices to identify novel magnetic-fields to be used in turbulence-optimization experiments.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3