EAST discharge prediction without integrating simulation results

Author:

Wan ChenguangORCID,Yu ZhiORCID,Pau AlessandroORCID,Liu XiaojuanORCID,Li Jiangang

Abstract

Abstract In this work, a purely data-driven discharge prediction model was developed and tested without integrating any data or results from simulations. The model was developed based on the experimental data from the Experimental Advanced Superconducting Tokamak (EAST) campaign 2010–2020 discharges and can predict the actual plasma current I p, normalized beta β n, toroidal beta β t, beta poloidal β p, electron density n e, stored energy W mhd, loop voltage V loop, elongation at plasma boundary κ, internal inductance l i, q at magnetic axis q 0, and q at 95% flux surface q 95. The average similarities of all the selected key diagnostic signals between prediction results and the experimental data are greater than 90%, except for the V loop and q 0. Before a tokamak experiment, the values of actuator signals are set in the discharge proposal stage, with the model allowing to check the consistency of expected diagnostic signals. The model can give the estimated values of the diagnostic signals to check the reasonableness of the tokamak experimental proposal.

Funder

National Key R&D Project

National MCF Energy R&D Program

Comprehensive Research Facility for Fusion Technology Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference60 articles.

1. The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results;Falchetto;Nucl. Fusion,2014

2. Report of the workshop on integrated simulations for magnetic fusion energy sciences;Bonoli,2015

3. Predicting disruptive instabilities in controlled fusion plasmas through deep learning;Kates-Harbeck;Nature,2019

4. Real-time prediction of high-density EAST disruptions using random forest;Hu;Nucl. Fusion,2021

5. Disruption prediction on EAST tokamak using a deep learning algorithm;Guo;Plasma Phys. Control. Fusion,2021

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3