Real-time prediction of high-density EAST disruptions using random forest

Author:

Hu W.H.ORCID,Rea C.ORCID,Yuan Q.P.,Erickson K.G.,Chen D.L.ORCID,Shen B.,Huang Y.,Xiao J.Y.,Chen J.J.,Duan Y.M.,Zhang Y.ORCID,Zhuang H.D.,Xu J.C.ORCID,Montes K.J.ORCID,Granetz R.S.,Zeng L.ORCID,Qian J.P.,Xiao B.J.,Li J.G.

Abstract

Abstract A real-time disruption predictor using random forest was developed for high-density disruptions and used in the plasma control system (PCS) of the EAST tokamak for the first time. The disruption predictor via random forest (DPRF) ran in piggyback mode and was actively exploited in dedicated experiments during the 2019–2020 experimental campaign to test its real-time predictive capabilities in oncoming high-density disruptions. During dedicated experiments, the mitigation system was triggered by a preset alarm provided by DPRF and neon gas was injected into the plasma to successfully mitigate disruption damage. DPRF’s average computing time of ∼250 μs is also an extremely relevant result, considering that the algorithm provides not only the probability of an impending disruption, i.e. the disruptivity, but also the so-called feature contributions, i.e. explainability estimates to interpret in real time the drivers of the disruptivity. DPRF was trained with a dataset of disruptions in which the electron density reached at least 80% of the Greenwald density limit, using the zero-dimensional signal routinely available to the EAST PCS. Through offline analysis, an optimal warning threshold on the DPRF disruptivity signal was found, which allows for a successful alarm rate of 92% and a false alarm rate of 9.9%. By analyzing the false alarm causes, we find that a fraction (∼15%) of the misclassifications are due to sudden transitions of plasma confinement from H- to L-mode, which often occur during high-density discharges in EAST. By analyzing DPRF feature contributions, it emerges that the loop voltage signal is that main cause of such false alarms: plasma signals more apt to characterize the confinement back-transition should be included to avoid false alarms.

Funder

U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences

National MCF Energy R&D Program of China

National Natural Science Foundation of China

President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3