Examination of stiff ion temperature gradient mode physics in simulations of DIII-D H-mode transport

Author:

Holland C.ORCID,Luce T.C.,Grierson B.A.ORCID,Smith S.P.,Marinoni A.,Burrell K.H.,Petty C.C.ORCID,Bass E.M.

Abstract

Abstract A systematic evaluation of gyrokinetic and gyrofluid model predictions of ion temperature gradient (ITG) stability and transport using parameters from DIII-D high confinement mode (H-mode) plasmas has been performed. The nonlinear CGYRO code is used to make the gyrokinetic predictions, and the quasilinear TGLF model for the corresponding gyrofluid predictions. The assessments are made at three radii (normalized toroidal flux ρ tor = 0.4, 0.55, and 0.7) in three different plasma scenarios with varying levels of neutral beam heating and torque. For each of the nine cases (3 radii × 3 scenarios) considered, ITG turbulence is found to be the dominant long-wavelength instability and transport mechanism. The inclusions of both transverse magnetic fluctuations and dynamic fast beam ions are stabilizing for all cases considered, with strongest effects seen at ρ or = 0.4 where the fast ion population and normalized plasma pressure β = 2μ 0 nT/B 2 are highest. The further inclusion of parallel magnetic fluctuations does not have a meaningful impact on the ITG turbulence in these scenarios, but does destabilize (in combination with fast ions) new high-frequency instabilities at ρ tor = 0.4 in the high power scenarios. In each case the linear and nonlinear ITG critical gradients are predicted to be lower than the measured ITG scale lengths and their associated uncertainties. Inclusion of equilibrium flow shear in the transport predictions generally leads to an upshift in effective critical gradient rather than a qualitative change in the predicted stiffness, with stronger responses typically seen in the gyrokinetic predictions than in the gyrofluid results. However, in most cases these upshifted gradients still remain below the measured values and their uncertainties. Although the predicted critical gradients are below the measured gradients, both models predicted flux-matching gradients consistent with measured values in six of the nine cases considered, with no clear systematic over- or underprediction. Thus, while the experimental ion temperature profiles do not appear to be closely pinned to the ITG critical gradient, both gyrokinetic and gyrofluid models are able to accurately match the measured gradients reasonably well in most cases.

Funder

Fusion Energy Sciences

Office of Science

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3