Impact of fast ions on microturbulence and zonal flow dynamics in HL-2A internal transport barriers

Author:

Xu J.Q.ORCID,Peng X.D.,Chen W.ORCID,Hao G.Z.ORCID,Li J.Q.,Qu H.P.,Li Z.J.,He X.X.ORCID,Li Y.G.,Jiang M.,Yu X.,Wen J.ORCID,Yang Z.C.,

Abstract

Abstract The turbulent transport properties and dynamics of zonal flows (ZFs) in the presence of fast ions (FIs) are investigated for a typical internal transport barrier (ITB) plasma based on the gyrokinetic approach, focusing on the role of FI temperature and the effects of the toroidal rotation, including the E× B rotational shear, parallel velocity gradient (PVG) as well as the rotation velocity itself. Linear GENE simulations have shown that the core ITB plasma on HL-2A is dominated by ion temperature gradient (ITG) modes and trapped electron modes (TEMs), where the former is stabilized by FIs whereas destabilized by the PVG. Neither of the FIs or the PVG has observable effect on TEMs. The ion heat transport generally decreases at large FI temperature due to the nonlinear electromagnetic stabilization of turbulence with increased total plasma β until electromagnetic modes are excited. The transport fluxes peak around a certain FI temperature and the ZF shearing rate is significantly higher at such value compared with that in the absence of FIs, and the heat flux reduction is a result of the synergistic interaction between turbulence, ZFs and the external rotational shear. The E× B shear stabilizing and PVG destabilizing is not obvious at low normalized ITG R/L Ti, indicating they are less important in determining the stiffness level in the relatively low density and rotation scenarios regarding the HL-2A ITB discharges. The turbulence suppression is predominated by the nonlinear stabilization of ITG turbulence as well as enhanced ZFs simultaneously in the presence of FIs. These results have also provided the possible way to reduce the turbulence transport through increasing the FI temperature in the off-axis neutral beam heated plasmas such as in HL-2A.

Funder

Sichuan Science Technology Program

China National Nuclear Corporation Fundamental Research Program

National MCF Energy R&D Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3