Ion temperature gradient control using reinforcement learning technique

Author:

Wakatsuki T.ORCID,Suzuki T.,Oyama N.,Hayashi N.

Abstract

Abstract Plasma with an internal transport barrier (ITB) is desirable for a steady-state tokamak reactor because of its high confinement quality and high bootstrap current fraction. However, the local pressure gradient tends to be steep and the plasma often becomes unstable. In this study, an ion temperature gradient control system based on neutral beam injection (NBI) is developed using the reinforcement learning technique. The response characteristics of an ion temperature gradient to NBI are non-linear and sensitive to experimental conditions, which makes it difficult to develop a robust control system. Our control system is trained for plasmas with a wide range of ITB strengths. Using the reinforcement learning technique, the system acquires a robust control feature through several thousand iterations of trial and error in an integrated transport simulation hosted by TOPICS. The control system is composed of neural networks (NNs) whose input variables are the ion temperature gradient, the current NBI power, and the NBI powers for several previous control time steps. The trained system can determine a control output which is suitable for the response characteristics inferred from the input variables. The trained control system is tested in the TOPICS simulation using plasma models based on two experimental plasmas of JT-60U with different ITB strengths. It is shown that the ion temperature gradient can be appropriately controlled for both plasmas, which supports the expectation that this system is applicable to real experiments.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3