Simultaneous control of safety factor profile and normalized beta for JT-60SA using reinforcement learning

Author:

Wakatsuki T.ORCID,Yoshida M.ORCID,Narita E.ORCID,Suzuki T.,Hayashi N.

Abstract

Abstract Plasma with an internal transport barrier (ITB) will be developed in JT-60SA as an attractive operation appropriate for a steady-state fusion reactor. To achieve the ITB plasma while avoiding magnetohydrodynamic instabilities, it is advantageous to simultaneously control the safety factor (q) profile and the normalized beta ( β N ). In this study, a control system for simultaneous control of the q profile and β N is studied in simulations prior to the real experiment in JT-60SA. The bootstrap current dominates the total current in the ITB region, which results in a coupling between the pressure profile and the q profile. Thus, it is crucial to control the q profile and β N according to the strength of the ITB. A two-stage neural network (NN)-based control system was developed to address this problem. The first stage estimates the transport properties (i.e. ITB strength) of the plasma from measurements. The second stage consists of several NNs for control of the q profile and β N . According to the ITB strength estimated by the NN in the first stage, the appropriate NN for control is selected from those in the second stage. Each NN in the second stage is trained to control plasmas with different ITB strengths through reinforcement learning employing RAPTOR, an integrated transport code. To validate this system, it is tested in a simulation employing another integrated transport code, TOPICS, to mimic the plasma control in JT-60SA plasmas with various ITB strengths. Stable control of the q profile and β N is achieved in ITB plasmas simulated by both the RAPTOR and TOPICS codes.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3