Gyrokinetic simulations compared with magnetic fluctuations diagnosed with a Faraday-effect radial interferometer-polarimeter in the DIII-D pedestal

Author:

Curie M.T.ORCID,Hatch D.R.ORCID,Halfmoon M.ORCID,Chen J.ORCID,Brower D.L.,Hassan E.ORCID,Kotschenreuther M.,Mahajan S.M.,Groebner R.J.,DIII-D team

Abstract

Abstract Experimental data on electromagnetic fluctuations in DIII-D, made available by the Faraday-effect radial interferometer-polarimeter (RIP) diagnostic Chen (2016 Rev. Sci. Instrum. 87 11E108), is examined in comparison with detailed gyrokinetic simulations using gyrokinetic electromagnetic numerical experiment (GENE). The diagnostic has the unique capability of making internal measurements of fluctuating magnetic fields n e δ B r d R n e d R . Local linear simulations identify microtearing modes (MTMs) over a substantial range of toroidal mode numbers (peaking at n = 15) with frequencies in good agreement with the experimental data. Local nonlinear simulations reinforce this result by producing a magnetic frequency spectrum in good agreement with that diagnosed by RIP. Simulated heat fluxes are in the range of experimental expectations. However, magnetic fluctuation amplitudes are substantially lower than the experimental expectations. Possible sources of this discrepancy are discussed, notably the fact that the diagnostics are localized at the mid-plane—the poloidal location where the simulations predict the fluctuation amplitudes to be smallest. Despite some discrepancies, several connections between simulations and experiments, combined with general criteria discriminating between potential pedestal instabilities, strongly point to MTMs as the source of the observed magnetic fluctuations.

Funder

Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3