Preliminary exploration of a WTaVTiCr high-entropy alloy as a plasma-facing material

Author:

Li YuORCID,Sun Yuhan,Cheng Long,Yuan YueORCID,Jia Baohai,He Jiaqing,Lu Guang-Hong,Luo Guang-NanORCID,Zhu Qiang

Abstract

Abstract With great power comes great challenges. For nuclear fusion, the holy grail of energy, taming the flame of a miniature star in a solid container remains one of the most fundamental challenges. A tungsten armour for the solid container marks a temporary triumph—a solution adopted by the world’s largest fusion experiment, ITER—but may be insufficient for future challenges. High-entropy alloys (HEAs), which are characteristic of a massive compositional space, may bring new solutions. Here, we explore their potential as plasma-facing materials (PFMs) with a prototype W57Ta21V11Ti8Cr3 HEA that was designed by exploiting the natural-mixing tendency among low-activation refractory elements. Revealed by x-ray diffraction analysis and energy-dispersive x-ray spectroscopy, it predominantly consists of a single bcc-phase but with V, Ti, and Cr segregation to grain boundaries and at precipitates. Its yield strength improves ∼60% at room temperature and oxidation rate reduces ∼6 times at 1273 K, compared with conventionally used W. The Ti–V–Cr rich segregations and the formed CrTaO4 compound contribute to the improved oxidation resistance. However, the Ti–V–Cr rich segregations, along with the decreasing valence-electron concentration of the matrix by the addition of Ta, V and Ti elements, considerably increase the deuterium retention of the W57Ta21V11Ti8Cr3 HEA to ∼675 multiples of recrystallized W. Moreover, its thermal conductivity decreases, being ∼40% of W at 973 K. However, the maximum tolerable steady-state heat load is still ∼84% of W because of its exceedingly high yield strength at elevated temperatures. Overall, despite being preliminary, we expect HEAs to play an important role in the development of advanced PFMs, for their disadvantages are likely to be compensated by their advantages or be overcome by composition optimization.

Funder

Shenzhen Science and Technology Innovation Commission

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3