Abstract
Abstract
For the first time, a real-time capable NBI code, which has a comparable fidelity to the much more computationally expensive Monte Carlo codes such as NUBEAM, has been coupled to the discharge control system of a tokamak. This implementation has been done at ASDEX Upgrade and is presented in this paper. Modifications to the numerical scheme of RABBIT for the time-dependent solution of the Fokker–Planck equation have been carried out to make it compatible with the non-equidistant time-steps, as they occur in real-time simulations. We demonstrate that this allows RABBIT to run in real-time both in a steady-state and time-dependent fashion and show and discuss an actual real-time simulation. Its accuracy is identified by comparing to offline RABBIT and TRANSP-NUBEAM runs (where more diagnostics are available for preciser inputs).
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献