Abstract
Abstract
The effect of the axisymmetric plasma shape on the non-axisymmetric plasma response to resonant magnetic perturbations is investigated in experiment and modeling for the DIII-D, EAST and ASDEX Upgrade tokamaks. Systematically modeling the effect of the triangularity, whilst keeping other equilibrium quantities largely unchanged, reveals that the plasma response is strongly suppressed at high triangularity compared to that at low triangularity. This is validated through targeted comparison with experiments at DIII-D, EAST, and ASDEX Upgrade. DIII-D and EAST magnetic measurements are used to validate simulations, while at ASDEX Upgrade the plasma edge displacement is measured. Both experiments and modeling find a reduced magnetic plasma response on the high-field side at high triangularity across devices. Multi-modal analysis of the simulation results extracts the mode structure and applied spectrum dependence of each mode. The amplitude of the dominant mode reveals similar trends with the edge resonance and radial displacement near the X-point, which suggests that the multi-mode plasma response provides another way to understand the edge localized mode (ELM) control physics. The plasma response is strongly reduced at high triangularity compared to that at low triangularity, which implies different ELM control effects as shaping is varied. These findings indicate that the plasma shape should be taken into consideration when designing an RMP-ELM control strategy in experiment, and that predictive plasma response calculations can be used to maximize access to RMP-ELM control in future devices by maximizing the coupling between coils and the plasma.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
U.S. Department of Energy
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献