Plasma performance and operational space with an RMP-ELM suppressed edge

Author:

Paz-Soldan C.ORCID,Gu S.ORCID,Leuthold N.ORCID,Lunia P.ORCID,Xie P.ORCID,Kim M.W.ORCID,Kim S.K.ORCID,Logan N.C.ORCID,Park J.-K.ORCID,Suttrop W.ORCID,Sun Y.ORCID,Weisberg D.B.ORCID,Willensdorfer M.ORCID, , , ,

Abstract

Abstract The operational space and global performance of plasmas with edge-localized modes (ELMs) suppressed by resonant magnetic perturbations (RMPs) are surveyed by comparing AUG, DIII-D, EAST, and KSTAR stationary operating points. RMP-ELM suppression is achieved over a range of plasma currents, toroidal fields, and RMP toroidal mode numbers. Consistent operational windows in edge safety factor are found across devices, while windows in plasma shaping parameters are distinct. Accessed pedestal parameters reveal a quantitatively similar pedestal-top density limit for RMP-ELM suppression in all devices of just over 3 × 10 19  m−3. This is surprising given the wide variance of many engineering parameters and edge collisionalities, and poses a challenge to extrapolation of the regime. Wide ranges in input power, confinement time, and stored energy are observed, with the achieved triple product found to scale like the product of current, field, and radius. Observed energy confinement scaling with engineering parameters for RMP-ELM suppressed plasmas are presented and compared with expectations from established H and L-mode scalings, including treatment of uncertainty analysis. Different scaling exponents for individual engineering parameters are found as compared to the established scalings. However, extrapolation to next-step tokamaks ITER and SPARC find overall consistency within uncertainties with the established scalings, finding no obvious performance penalty when extrapolating from the assembled multi-device RMP-ELM suppressed database. Overall this work identifies common physics for RMP-ELM suppression and highlights the need to pursue this no-ELM regime at higher magnetic field and different plasma physical size.

Funder

Korean Institute of Fusion Energy

EUROfusion

U.S. Department of Energy

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3