Optimization of modular and helical coils applying genetic algorithm and fully-three-dimensional B-spline curves

Author:

Yamaguchi Hiroyuki,Satake ShinsukeORCID,Nakata MotokiORCID,Shimizu AkihiroORCID,Suzuki YasuhiroORCID,W7-X Team the

Abstract

Abstract A new numerical method for designing the external coils of a stellarator is presented. In this method, the shape of filamentary coils is expressed using fully three-dimensional B-spline curves that are not necessarily constrained on a winding surface. The control points of B-spline curves are optimized together with the coil position and current to minimize an objective function, which is defined using normal field components and engineering constraints. The genetic algorithm is employed to minimize the objective function for arbitrary combinations of modular, helical, and circular poloidal field coils without giving any specific initial guess of coil shapes. A new numerical code genetic optimizer using sequence of points for external coil is developed on the basis of this method, and successfully found optimized modular coils for the stellarators CFQS and Wendelstein 7-X. We also found a specific pattern of helical coil arrangement that can reproduce these optimized stellarators while creating divertor legs outside of the closed magnetic surfaces.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3