On the potential of physics-informed neural networks to solve inverse problems in tokamaks

Author:

Rossi RiccardoORCID,Gelfusa MichelaORCID,Murari AndreaORCID,

Abstract

Abstract Magnetic confinement nuclear fusion holds great promise as a source of clean and sustainable energy for the future. However, achieving net energy from fusion reactors requires a more profound understanding of the underlying physics and the development of efficient control strategies. Plasma diagnostics are vital to these efforts, but accessing local information often involves solving very ill-posed inverse problems. Regrettably, many of the current approaches for solving these problems rely on simplifying assumptions, sometimes inaccurate or not completely verified, with consequent imprecise outcomes. In order to overcome these challenges, the present study suggests employing physics-informed neural networks (PINNs) to tackle inverse problems in tokamaks. PINNs represent a type of neural network that is versatile and can offer several benefits over traditional methods, such as their capability of handling incomplete physics equations, of coping with noisy data, and of operating mesh-independently. In this work, PINNs are applied to three typical inverse problems in tokamak physics: equilibrium reconstruction, interferometer inversion, and bolometer tomography. The reconstructions are compared with measurements from other diagnostics and correlated phenomena, and the results clearly show that PINNs can be easily applied to these types of problems, delivering accurate results. Furthermore, we discuss the potential of PINNs as a powerful tool for integrated data analysis. Overall, this study demonstrates the great potential of PINNs for solving inverse problems in magnetic confinement thermonuclear fusion and highlights the benefits of using advanced machine learning techniques for the interpretation of various plasma diagnostics.

Funder

Euratom Research and Training Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference68 articles.

1. Chapter 7: diagnostics;Donné;Nucl. Fusion,2007

2. Diagnostics for plasma control—from ITER to DEMO;Biel;Fusion Eng. Des.,2019

3. Principles of Plasma Diagnostics

4. Diagnostics for first plasma study on EAST tokamak;The EAST Team;Phys. Lett. A,2008

5. DEMO diagnostics and burn control;Biel;Fusion Eng. Des.,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3