Grad–Shafranov equilibria via data-free physics informed neural networks

Author:

Jang Byoungchan1ORCID,Kaptanoglu Alan A.2ORCID,Gaur Rahul3ORCID,Pan Shaowu4ORCID,Landreman Matt1ORCID,Dorland William1ORCID

Affiliation:

1. Institute for Research in Electronics and Applied Physics, University of Maryland 1 , College Park, Maryland 20742, USA

2. Courant Institute, New York University 2 , New York, New York 10012, USA

3. Department of Mechanical and Aerospace Engineering, Princeton University 3 , Princeton, New Jersey 08544, USA

4. Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute 4 , Troy, New York 12180, USA

Abstract

A large number of magnetohydrodynamic (MHD) equilibrium calculations are often required for uncertainty quantification, optimization, and real-time diagnostic information, making MHD equilibrium codes vital to the field of plasma physics. In this paper, we explore a method for solving the Grad–Shafranov equation by using physics-informed neural networks (PINNs). For PINNs, we optimize neural networks by directly minimizing the residual of the partial differential equation as a loss function. We show that PINNs can accurately and effectively solve the Grad–Shafranov equation with several different boundary conditions, making it more flexible than traditional solvers. This method is flexible as it does not require any mesh and basis choice, thereby streamlining the computational process. We also explore the parameter space by varying the size of the model, the learning rate, and boundary conditions to map various tradeoffs such as between reconstruction error and computational speed. Additionally, we introduce a parameterized PINN framework, expanding the input space to include variables such as pressure, aspect ratio, elongation, and triangularity in order to handle a broader range of plasma scenarios within a single network. Parameterized PINNs could be used in future work to solve inverse problems such as shape optimization.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3