Modeling electron temperature profiles in the pedestal with simple formulas for ETG transport

Author:

Hatch D.R.ORCID,Kotschenreuther M.T.,Li P.-Y.ORCID,Chapman-Oplopoiou B.ORCID,Parisi J.ORCID,Mahajan S.M.,Groebner R.ORCID

Abstract

Abstract This paper reports on the refinement (building on (Hatch D.R. et al 2022 Phys. Plasmas 29 062501)) and application of simple formulas for electron heat transport from electron temperature gradient (ETG) driven turbulence in the pedestal. The formulas are improved by (1) improving the parameterization for certain key parameters and (2) carefully accounting for the impact of geometry and shaping in the underlying gyrokinetic simulation database. Comparisons with nonlinear gyrokinetic simulations of ETG transport in the MAST pedestal demonstrate the model’s applicability to spherical tokamaks in addition to standard aspect ratio tokamaks. We identify bounds for model applicability: the model is accurate in the steep gradient region, where the ETG turbulence is largely slab-like, but accuracy decreases as the temperature gradient becomes weaker in the pedestal top. We use the formula to model the electron temperature profile in the pedestal for four experimental scenarios while extensively varying input parameters to represent uncertainties. In all cases, the predicted electron temperature profile exhibits extreme sensitivity to separatrix temperature and density, which has implications for core-edge integration. The model reproduces the electron temperature profile for high η e = L n e / L T e scenarios but not for low η e scenarios in which microtearing modes (MTMs) have been identified. We develop a proof-of-concept model for MTM transport and explore the relative roles of ETG and MTM in setting the electron temperature profile.

Funder

Euratom Research and Training Programme

Research Councils UK

Fusion Energy Sciences

Publisher

IOP Publishing

Reference46 articles.

1. Gyrokinetic analysis and simulation of pedestals to identify the culprits for energy losses using ‘fingerprints;(the DIII-D TEAM and JET Contributors);Nucl. Fusion,2019

2. Final report for the FY19 FES theory performance target;Hatch,2019

3. Electron temperature gradient driven turbulence;Jenko;Phys. Plasmas,2000

4. Electron temperature gradient turbulence;Dorland;Phys. Rev. Lett.,2000

5. Gyrokinetic microinstabilities in ASDEX Upgrade edge plasmas;Told;Phys. Plasmas,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3