Relationship between magnetic field and tokamak size—a system engineering perspective and implications to fusion development

Author:

Federici G.,Siccinio M.,Bachmann C.,Giannini L.,Luongo C.,Lungaroni M.ORCID

Abstract

Abstract High temperature superconductors (HTSs) offer the promise of operating at higher magnetic field and temperature. Recently, the use of high field magnets (by adopting HTS) has been promoted by several groups around the world, including new start-up entries, both to substantially reduce the size of a fusion power reactor system and as a breakthrough innovation that could dramatically accelerate fusion power deployment. This paper describes the results of an assessment to understand the impact of using high field magnets in the design of DEMO in Europe, considering a comprehensive list of physics and engineering limitations together with the interdependencies with other important parameters. Based on the results, it is concluded that increasing the magnetic field does not lead to a reduction in device size with relevant nuclear performance requirements, because (i) large structures are needed to withstand the enormous electromagnetic forces, (ii) thick blanket and n-shield structures are needed to protect the coils from radiation damage effects, and (iii) new divertor solutions with performances well beyond today’s concepts are needed. Stronger structural materials allow for more compact tokamaks, but do not change the conclusion that scalability is not favourable when increasing the magnetic field, beyond a certain point, the machine size cannot be further reduced. More advanced structural support concepts for high-field coils have been explored and concluded that these solutions are either unfeasible or provide only marginal size reduction, by far not sufficient to account for the potential of operating at very high field provided by HTS. Additionally, the cost of high field coils is significant at today’s price levels and shows to scale roughly with the square of the field. Nevertheless, it is believed that even when not operated at high field and starting within conventional insulated coils, HTS can still offer certain benefits. These include the simplification of the magnet cooling scheme thanks to increased temperature margin (indirect conduction cooling). This in turn can greatly simplify coil construction and minimize high-voltage risks at the terminals.

Funder

Euratom Research and Training Programme

Publisher

IOP Publishing

Reference33 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3