Overview of the SPARC tokamak

Author:

Creely A. J.ORCID,Greenwald M. J.ORCID,Ballinger S. B.,Brunner D.,Canik J.,Doody J.,Fülöp T.ORCID,Garnier D. T.,Granetz R.,Gray T. K.,Holland C.,Howard N. T.,Hughes J. W.ORCID,Irby J. H.,Izzo V. A.,Kramer G. J.,Kuang A. Q.ORCID,LaBombard B.,Lin Y.ORCID,Lipschultz B.,Logan N. C.,Lore J. D.,Marmar E. S.,Montes K.,Mumgaard R. T.,Paz-Soldan C.ORCID,Rea C.ORCID,Reinke M. L.,Rodriguez-Fernandez P.ORCID,Särkimäki K.ORCID,Sciortino F.,Scott S. D.,Snicker A.,Snyder P. B.,Sorbom B. N.,Sweeney R.,Tinguely R. A.,Tolman E. A.,Umansky M.,Vallhagen O.,Varje J.,Whyte D. G.,Wright J. C.,Wukitch S. J.,Zhu J.,

Abstract

The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$T), compact ($R_0 = 1.85$m,$a = 0.57$m), superconducting, D-T tokamak with the goal of producing fusion gain$Q>2$from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of$Q>2$is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of$H_{98,y2} = 1$, SPARC is projected to attain$Q \approx 11$and$P_{\textrm {fusion}} \approx 140$MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference96 articles.

1. Alpha-particle physics in the tokamak fusion test reactor DT experiment

2. Scalings for tokamak energy confinement

3. Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path

4. Verdoolaege, G. , Kaye, S. M. , Angioni, C. , Kardaun, O. , Maslov, M. , Romanelli, M. , Ryter, F. & Thomsen, K. 2018 First analysis of the updated itpa global h-mode confinement database. In Proceedings of the 27th IAEA Fusion Energy Conference, p. 8. International Atomic Energy Agency.

5. Compact Ignition Tokamak (CIT) Central Solenoid Design and R&D for a “Bucked” and for a “Wedged” Machine

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3