Plasmoid drift and first wall heat deposition during ITER H-mode dual-SPIs in JOREK simulations

Author:

Hu D.ORCID,Artola F.J.ORCID,Nardon E.ORCID,Lehnen M.ORCID,Kong M.ORCID,Bonfiglio D.ORCID,Hoelzl M.ORCID,Huijsmans G.T.A.ORCID,

Abstract

Abstract The heat flux mitigation during the thermal quench (TQ) by the shattered pellet injection (SPI) is one of the major elements of disruption mitigation strategy for ITER. It’s efficiency greatly depends on the SPI and the target plasma parameters, and is ultimately characterised by the heat deposition on to the plasma facing components. To investigate such heat deposition, JOREK simulations of neon-mixed dual-SPIs into ITER baseline H-mode and a ‘degraded H-mode’ with and without good injector synchronization are performed with focus on the first wall heat flux and its energy impact. It is found that low neon fraction SPIs into the baseline H-mode plasmas exhibit strong major radial plasmoid drift as the fragments arrive at the pedestal, accompanied by edge stochasticity. Significant density expulsion and outgoing heat flux occurs as a result, reducing the mitigation efficiency. Such drift motion could be mitigated by injecting higher neon fraction pellets, or by considering the pre-disruption confinement degradation, thus improving the radiation fraction. The radiation heat flux is found to peak in the vicinity of the fragment injection location in the early injection phase, while it relaxes later on due to parallel impurity transport. The overall radiation asymmetry could be significantly mitigated by good synchronization. Time integration of the local heat flux is carried out to provide its energy impact for wall heat damage assessment. For the baseline H-mode case with full pellet injection, melting of the stainless steel armour of the diagnostic port could occur near the injection port, which is acceptable, without any melting of the first wall tungsten tiles. For the degraded H-mode cases with quarter-pellet SPIs, which have 1 / 4 total volume of a full pellet, the maximum energy impact approaches the tolerable limit of the stainless steel with un-synchronized SPIs, and stays well below such limit for the perfectly synchronized ones.

Funder

ITER organization

National Magnetic Confinement Fusion Program of China

Euratom Research and Training Programme

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3