Disruption thermal load mitigation with shattered pellet injection on the Joint European Torus (JET)

Author:

Sheikh U.A.ORCID,Shiraki D.,Sweeney R.ORCID,Carvalho P.,Jachmich S.,Joffrin E.,Lehnen M.ORCID,Lovell J.,Nardon E.ORCID,Silburn S.ORCID,JET Contributors

Abstract

Abstract Disruption mitigation remains a critical, unresolved challenge for ITER. To aid in addressing this challenge, a shattered pellet injection (SPI) system was installed on JET and experiments conducted at a range of thermal energy fractions and stored energies in excess of 7 MJ. The primary goals of these experiments were to investigate the efficacy of the SPI on JET and the ability of the plasma to assimilate multiple pellets. Single pellet injections produced a saturation in total radiated energy (W rad) with increasing injected neon content, suggesting total radiation of stored thermal energy. Further increases in injected neon quantities resulted in reduced cooling times and current quench (CQ) durations, indicating higher impurity assimilation. No significant variation in CQ duration or W rad was observed when varying the deuterium content at fixed neon quantities. Higher assimilation, inferred by shorter CQ durations, was measured when a mechanical punch was used to launch the pellets and this was attributed to a lower pellet velocity leading to higher solid content in the pellet plume and larger fragments penetrating deeper into the plasma. Radiation asymmetries averaged over the cooling time were inferred from Emis3D and ranged from 1.6 to 1.9. Asymmetries averaged over the entire disruption sequence were found to increase at higher thermal energy fractions. The radiated energy fractions decreased with increasing thermal energy fractions but this trend was eliminated when toroidal asymmetries were accounted for with Emis3D. Pure deuterium pellets were able to produce cooling times of up to 75 ms with a gradual loss in thermal stored energy of up to 80%. Experiments with multiple pellet injection indicated W rad can be increased through pellet superposition and density can be increased with an additional D2 injection without a reduction in W rad. KPRAD modelling accurately reproduced the cooling times and the CQ duration at high thermal energies. Assimilation estimates from KPRAD indicated CQ rates scale strongly whilst W rad scales weakly and saturates with assimilated neon content. Comparable W rad can be achieved with lower assimilated neon quantities as longer cooling times are attained. Thus reduced neon content can be preferential in a thermal load mitigation scheme as it may reduce radiation asymmetries and prevent flash melting.

Funder

H2020 Euratom

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference21 articles.

1. Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design;Jachmich;Nucl. Fusion,2021

2. Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D;Commaux;Nucl. Fusion,2010

3. Design and performance of shattered pellet injection systems for JET and KSTAR disruption mitigation research in support of ITER;Baylor;Nucl. Fusion,2021

4. Deployment of multiple shattered pellet injection systems in KSTAR;Park;Fusion Eng. Des.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3