Nitrogen retention and ammonia production on tungsten

Author:

Ghiorghiu F.,Aissou T.,Minissale M.ORCID,Angot T.,De Temmerman G.,Bisson R.ORCID

Abstract

Abstract We report a systematic study that quantifies nitrogen retention and ammonia production on tungsten and that sheds light on the mechanism for ammonia formation on ITER’s divertor material. Saturation of the nitrogen-implanted layer in polycrystalline tungsten is observed at room temperature for a nitrogen ion fluence in the low 1021 N+ m−2 range. Nitrogen desorption from this N-implanted layer occurs in the 800–1100 K temperature range and exhibits a zero-order kinetics with an activation energy of 1.45 eV and a prefactor of 5 × 1024 m−2 s−1. Following nitrogen and deuterium co-implantation, deuterated ammonia production is observed during temperature programmed desorption between 350 K and 650 K in conjunction with deuterium desorption. In contrast, nitrogen desorption still occurs above 800 K. Significant production of ammonia is obtained only when the nitrogen layer created by ion implantation is approaching saturation and the amount of nitrogen lost to ammonia production is only in the percent range. This result is understood by repeating cycles of deuterium implantation and thermo-desorption below the desorption temperature of the nitrogen layer. The exponential decay of the amount of produced ammonia with cycle number demonstrates that nitrogen diffusion to the surface is negligible in the ammonia production temperature range and that ammonia formation occurs at the outermost surface layer. The maximum quantity of ammonia produced from the present N implanted layer is below 2 × 1018 ND3 m−2, which is limited by the nitrogen atom surface density. Surface vibrational spectroscopy demonstrates the presence of ammonia precursors on the nitrogen-implanted tungsten surface upon deuterium implantation. These ammonia precursors can be created also at room temperature through the dissociative chemisorption of thermal D2 catalysed by nitrogen present at the tungsten surface and, more efficiently, by adsorption of deuterium atoms.

Funder

FR-FCM

A∗MIDEX

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3