Deuterium retention and ammonia production from D-implanted 316 L stainless steel: insights for future fusion reactors

Author:

Aissou T,Ghiorghiu F,Minissale MORCID,Angot T,De Temmerman G,Bisson RORCID

Abstract

Abstract We present a systematic study that quantifies deuterium (D) retention and ammonia (ND3) production from 316 L stainless steel (SS316L) following the implantation of D ions in conditions similar to the ones expected in the ITER tokamak, i.e. with kinetic energy below 300 eV. Using Temperature Programmed Desorption (TPD) after deuterium ion implantation at 250 eV/D, we show that deuterium retention increases linearly with the D fluence up to 1021 D+m−2, with a retention probability of 18%. For higher D fluence, deuterium retention increases sub-linearly. Analysis of the TPD spectra evolution with varying storage time in vacuum after D implantation, shows that D retention is influenced by D diffusion into the bulk of SS316L. Subsequent to D ion implantation, we evidence the efficient production of ND3 molecules during TPD, between 400 K and 750 K, from the nitrogen present naturally in SS316L. Up to 21% of the D release during TPD can be found in ND3 molecules, indeed. The fraction of ND3 in the total D release depends both on the D ion fluence and the nitrogen concentration profile in the bulk. At least 7% of the D release is found in the form of ND3 molecules, even at a fluence of 2 × 1021 D+m−2 and for a natural N concentration bulk profile. Both N diffusion and D diffusion into the bulk appear to dictate the kinetics of ND3 production. Our findings of efficient production of ND3 in D-implanted austenitic 316 L stainless steel underline the need for similar studies on reduced-activation ferritic/martensitic (RAFM) steels that contain similar content of nitrogen and will be used in fusion reactor prototypes.

Funder

EUROfusion

A*MIDEX

FR-FCM

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Focus on plasma-facing materials in nuclear fusion reactors;Materials Research Express;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3