Plasma control for the step prototype power plant

Author:

Lennholm M.ORCID,Aleiferis S.ORCID,Bakes S.,Bardsley O.P.ORCID,van Berkel M.ORCID,Casson F.J.ORCID,Chaudry F.,Conway N.J.,Hender T.C.,Henderson S.S.ORCID,Hudoba A.ORCID,Kool B.ORCID,Lafferty M.,Meyer H.ORCID,Mitchell J.,Mitra A.,Osawa R.,Otin R.ORCID,Parrott A.,Thompson T.,Xia G.ORCID,

Abstract

Abstract In 2019 the UK launched the Spherical Tokamak for Energy Production (STEP) programme to design and build a prototype electricity producing nuclear fusion power plant, aiming to start operation around 2040. The plant should lay the foundation for the development of commercial nuclear fusion power plants. The design is based on the spherical tokamak principle, which opens a route to high pressure, steady state, operation. While facilitating steady state operation, the spherical design introduces some specific plasma control challenges: (i) All plasma current during the burn phase should to be generated through non-inductive means, dominated by bootstrap current. This leads to operation at high normalised plasma pressure β N with high plasma elongation, which in turn imposes effective active stabilisation of the vertical plasma position. (ii) The tight aspect ratio means very limited space for a central solenoid, imposing that even the current ramp up must be non-inductively generated. (iii) The compact design leads to extreme heat loads on plasma facing components. A double null design has been chosen to spread this load, putting strict demands on the control of the unstable vertical plasma position. (iv) The heat pulses associated with unmitigated ELMs are unlikely to be acceptable imposing ELM free operation or active ELM control. (v) To reduce and spread heat loads, core and divertor radiation and momentum loss has to be controlled, aiming to operate with simultaneously detached upper and lower divertors. (vi) High pressure operation is likely to require active resistive wall mode (RWM) stabilisation. (vii) The conductivity distribution in structures near the plasma must be carefully selected to reduce the growth rates for the vertical instability and the RWM without damping the penetration of the of magnetic fields from active control coils too much. This article describes the initial work carried out to develop a STEP plasma control system.

Publisher

IOP Publishing

Reference55 articles.

1. STEP—on the pathway to fusion commercialization;Wilson,2020

2. The plasma scenarios for the spherical tokamak for energy production (STEP) and their technical implications;Meyer,2023

3. Recent progress towards an advanced spherical torus operating point in NSTX

4. Bootstrap current in a tokamak

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasma burn—mind the gap;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-26

2. Controlling a new plasma regime;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3