Abstract
Abstract
Understanding impurity transport in tokamak plasmas is crucial to control radiative losses and material migration in future magnetic fusion reactors. In this work we deploy the SolEdge2D-EIRENE code to model the boundary plasma in a WEST discharge, satisfactorily reproducing measurements of both upstream and divertor plasma conditions. The spatial distribution of oxygen, studied here as a representative light impurity, is compared to vacuum ultraviolet spectroscopy measurements acquired with an oscillating line of sight. The simulation captures a key feature of the experiment, namely a factor of ≃2 higher oxygen brightness in the inner divertor region compared to the outer one. This spatial asymmetry in oxygen concentration is interpreted by analyzing the balance of friction forces and thermal gradient forces that the light impurity exchanges with the main plasma.
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献