Multi-physics modeling of tungsten collector probe samples during the WEST C4 He campaign

Author:

Lasa A.ORCID,Blondel S.ORCID,Curreli D.ORCID,Drobny J.,Garcia W.A.,Gunn J.,Hayes A.,Lore J.D.ORCID,Renganathan A.,Tsitrone E.,Unterberg E.ORCID,Wirth B.D.ORCID

Abstract

Abstract We describe the results of a multi-scale, multi-physics modeling assessment of SOLPS-ITER, hPIC2, RustBCA and Xolotl, in which five single-crystal tungsten (W) samples were placed in a reciprocating collector probe and exposed to helium (He) plasma in the WEST fusion device. In our models, we considered a pure (100 %) He plasma, as well as one with oxygen (O) present (95% He 5% O) corresponding to the impurity concentration estimated during the C4 He campaign in WEST. Our SOLPS simulations approximately match experimental reciprocating Langmuir probe plasma measurements of plasma density and temperature. Using these plasma parameters as input, hPIC2 and RustBCA predict that the presence of oxygen impurities lead to a 15%–20% decrease in ion and heat fluxes to the surface, and an order of magnitude higher sputtering yields (compared with a pure He plasma). Xolotl predictions for the response of tungsten to plasma surface interactions (PSIs) agree with experimental LAMS analysis, and indicate large near-surface He concentrations, which quickly decay with depth. Our model also shows an increasing role of erosion—in removing the near-surface He—with time. Overall, slightly higher retention is predicted for tungsten exposed to a pure He plasma, with the largest differences in the near-surface gas content caused by the large oxygen-induced erosion. This highlights the important role that impurities play in PSI. Therefore, future work will focus on providing a fully self-consistent description of oxygen (and oxides, etc.) in our models, through multi-species implementation in GITR and inclusion of oxygen and tungsten oxide formation in Xolotl.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3