Performance assessment of long-legged tightly-baffled divertor geometries in the ARC reactor concept

Author:

Wigram M.R.K.ORCID,LaBombard B.ORCID,Umansky M.V.,Kuang A.Q.ORCID,Golfinopoulos T.,Terry J.L.ORCID,Brunner D.ORCID,Rensink M.E.,Ridgers C.P.,Whyte D.G.

Abstract

Abstract Extremely intense power exhaust channels are projected for tokamak-based fusion power reactors; a means to handle them remains to be demonstrated. Advanced divertor configurations have been proposed as potential solutions. Recent modelling of tightly baffled, long-legged divertor geometries for the divertor test tokamak concept, ADX, has shown that these concepts may access passively stable, fully detached regimes over a broad range of parameters. The question remains as to how such divertors may perform in a reactor setting. To explore this, numerical simulations are performed with UEDGE for the long-legged divertor geometry proposed for the ARC pilot plant conceptual design—a device with projected heat flux power width ( ) of 0.4 mm and power exhaust of 93 MW—first for a simplified Super-X divertor configuration (SXD) and then for the actual X-point target divertor (XPTD) being proposed. It is found that the SXD, combined with 0.5% fixed-fraction neon impurity concentration, can produce passively stable, detached divertor regimes for power exhausts in the range of 80–108 MW—fully accommodating ARC’s power exhaust. The XPTD configuration is found to reduce the strike-point temperature by a factor of  ∼10 compared to the SXD for small separations (∼1.4 ) between main and divertor X-point magnetic flux surfaces. Even greater potential reductions are identified for reducing separations to  ∼1 or less. The power handling response is found to be insensitive to the level of cross-field convective or diffusive transport assumed in the divertor leg. By raising the separatrix density by a factor of 1.5, stable fully detached divertor solutions are obtained that fully accommodate the ARC exhaust power without impurity seeding. To our knowledge, this is the first time an impurity-free divertor power handling scenario has been obtained in edge modelling for a tokamak fusion power reactor with of 0.4 mm.

Funder

Engineering and Physical Sciences Research Council

University of York

Lawrence Livermore National Laboratory

Massachusetts Institute of Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3