Investigating the impact of the molecular charge-exchange rate on detached SOLPS-ITER simulations

Author:

Verhaegh K.ORCID,Williams A.C.,Moulton D.,Lipschultz B.ORCID,Duval B.P.,Février O.ORCID,Fil A.,Harrison J.ORCID,Osborne N.,Reimerdes H.ORCID,Theiler C.ORCID,the TCV Team

Abstract

AbstractPlasma-molecular interactions generate molecular ions which react with the plasma and contribute to detachment through molecular activated recombination (MAR), reducing the ion target flux, and molecular activated dissociation (MAD), both of which create excited atoms. Hydrogenic emission from these atoms has been detected experimentally in detached TCV, JET and MAST-U deuterium plasmas. The TCV findings, however, were in disagreement with SOLPS-ITER simulations for deuterium, indicating a molecular ion density (D2+) that was insufficient to lead to significant hydrogenic emission, which was attributed to underestimates of the molecular charge exchange rate (D2+D+D2++D) for deuterium (obtained by rescaling the hydrogen rates by their isotope mass). In this work, we have performed new SOLPS-ITER simulations with the default rate setup and a modified rate setup where ion isotope mass rescaling was disabled. This increased theD2+content by>×100. By disabling ion isotope mass rescaling: (1) the total ion sinks are more than doubled due to the inclusion of MAR; (2) the additional MAR causes the ion target flux to roll-over during detachment; (3) the totalDαemission in the divertor increases during deep detachment by roughly a factor of four; (4) the neutral atom density in the divertor is doubled due to MAD, leading to a 50% increase in neutral pressure; (5) total hydrogenic power loss is increased by up to 60% due to MAD. These differences result in an improved agreement between the experiment and the simulations in terms of spectroscopic measurements, ion source/sink inferences and the occurrence of an ion target flux roll-over. Extrapolating simplified scalings of divertor molecular densities (TCV & MAST-U) to reactor-relevant densities suggests the underestimation of molecular charge exchange could strongly impact divertor physics (neutral atom density, ions sinks) and hydrogen emission (which has implications for detachment control) in deeply detached conditions, warranting further study.

Funder

EUROfusion

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 Euratom

Engineering and Physical Sciences Research Council

Euratom Research and Training Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3