Preemptive RMP-driven ELM crash suppression automated by a real-time machine-learning classifier in KSTAR

Author:

Shin GiwookORCID,Han H.,Kim M.ORCID,Hahn S.-H.ORCID,Ko W.H.,Park G.Y.,Lee Y.H.,Lee M.W.,Kim M.H.,Juhn J.-W.,Seo D.C.,Jang J.,Kim H.S.,Lee J.H.,Kim H.J.

Abstract

Abstract Suppression or mitigation of edge-localized mode (ELM) crashes is necessary for ITER. The strategy to suppress all the ELM crashes by the resonant magnetic perturbation (RMP) should be applied as soon as the first low-to-high confinement (L–H) transition occurs. A control algorithm based on real-time machine learning (ML) enables such an approach: it classifies the H-mode transition and the ELMy phase in real-time and automatically applies the preemptive RMP. This paper reports the algorithm design, which is now implemented in the KSTAR plasma-control system, and the corresponding experimental demonstration of typical high-δ KSTAR H-mode plasmas. As a result, all initial ELM crashes are suppressed with an acceptable safety factor at the edge (q 95) and with RMP field adjustment. Moreover, the ML-driven ELM crash suppression discharges remain stable without further degradation due to the regularization of the plasma pedestal.

Funder

Korea Hydro and Nuclear Power

Ministry of Science and ICT, South Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference33 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3