Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset

Author:

O’Shea Finn HORCID,Joung SeminORCID,Smith David R,Ratner Daniel,Coffee Ryan

Abstract

Abstract Using supervised learning to train a machine learning model to predict an on-coming edge localized mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.

Funder

Department of Energy

SLAC National Accelerator Laboratory

Publisher

IOP Publishing

Reference46 articles.

1. Physics and engineering issues associated with edge localized mode control in ITER;Wade;Fusion Eng. Des.,2009

2. Key ITER plasma edge and plasma–material interaction issues;Federici;J. Nucl. Mater.,2003

3. Boundary plasma and divertor phenomena in MAST;Counsell;Plasma Phys. Control. Fusion,2002

4. Real-time ELM onset prediction with deep neural networks and high-bandwidth edge fluctuation measurements;(the DIII-D Team),2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3