Spectroscopic investigations of detachment on the MAST Upgrade Super-X divertor

Author:

Verhaegh K.ORCID,Lipschultz B.ORCID,Harrison J.R.ORCID,Osborne N.,Williams A.C.,Ryan P.,Allcock J.,Clark J.G.,Federici F.,Kool B.ORCID,Wijkamp T.ORCID,Fil A.,Moulton D.,Myatra O.ORCID,Thornton A.,Bosman T.O.S.J.ORCID,Bowman C.,Cunningham G.,Duval B.P.,Henderson S.ORCID,Scannell R.,the MAST Upgrade team

Abstract

Abstract We present the first analysis of the atomic and molecular processes at play during detachment in the MAST-U Super-X divertor using divertor spectroscopy data. Our analysis indicates detachment in the MAST-U Super-X divertor can be separated into four sequential phases: first, the ionisation region detaches from the target at detachment onset leaving a region of increased molecular densities downstream. The plasma interacts with these molecules, resulting in molecular ions ( D 2 + and/or D 2 D + D ) that further react with the plasma leading to molecular activated recombination and dissociation (MAR and MAD), which results in excited atoms and significant Balmer line emission. Second, the MAR region detaches from the target leaving a sub-eV temperature region downstream. Third, an onset of strong emission from electron–ion recombination (EIR) ensues. Finally, the electron density decays near the target, resulting in the bulk of the electron density moving upstream. The analysis in this paper indicates that plasma–molecule interactions have a larger impact than previously reported and play a critical role in the intensity and interpretation of hydrogen atomic line emission characteristics on MAST-U. Furthermore, we find that the Fulcher band emission profile in the divertor can be used as a proxy for the ionisation region and may also be employed as a plasma temperature diagnostic for improving the separation of hydrogenic emission arising from electron-impact excitation and that from plasma–molecular interactions. We provide evidences for the presence of low electron temperatures (≪0.5 eV) during detachment phases III–IV based on quantitative spectroscopy analysis, a Boltzmann relation of the high-n Balmer line transitions together with an analysis of the brightness of high-n Balmer lines.

Funder

Engineering and Physical Sciences Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3