Effect of resistivity on the pedestal MHD stability in JET

Author:

Nyström H.ORCID,Frassinetti L.ORCID,Saarelma S.,Huijsmans G.T.A.,Perez von Thun C.ORCID,Maggi C.F.ORCID,Hillesheim J.C.,contributors JET

Abstract

Abstract The ELM triggering mechanism in tokamaks is not yet fully understood. For example, in the JET tokamak with ITER-like wall (commonly called JET-ILW), the ELMs are sometimes triggered before the ideal peeling-ballooning (PB) boundary is reached. This typically occurs for shots with high input power and high gas rate. The discrepancy between model and experiment has in previous works been clearly correlated with the relative shift between the electron temperature and density pedestals. The discrepancy has also been correlated with the resistivity in the middle-bottom of the pedestal. The present work shows that resistive MHD can have a significant impact on the PB stability of JET pedestals. The inclusion of resistivity removes the correlation between the discrepancy from the PB stability and the relative shift (the difference between the position of the electron temperature and density pedestals) and significantly improves the agreement between PB model and experimental results. The work also shows that the key parameter is the resistivity at the pedestal bottom, near the separatrix, while the resistivity near the middle/top of the pedestal has a negligible effect on the PB stability of JET plasmas.

Funder

EUROfusion

Vetenskapsrådet

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3