Beryllium melt instabilities and ejection during unmitigated current quenches in ITER

Author:

Vignitchouk L.ORCID,Ratynskaia S.ORCID,Pitts R.A.ORCID,Lehnen M.ORCID

Abstract

Abstract The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3