Feasibility of imaging amyloid in the brain using small-angle x-ray scattering

Author:

Choi MinaORCID,Dahal Eshan,Badano AldoORCID

Abstract

Abstract Small-angle x-ray scattering (SAXS) imaging may have the potential to image β-amyloid plaques in vivo in the brain without tracers for assessment of Alzheimer’s disease (AD). We use a laboratory SAXS system for planar imaging of AD model and control mouse brains slices to detect regions with high density of amyloid plaques. These regions were validated with histology methods. Using Monte Carlo techniques, we simulate SAXS computed tomography (SAXS-CT) system to study the potential of selectively differentiating amyloid targets in mouse and human head phantoms with detailed anatomy. We found contrast between amyloid and brain tissue at small q (below 0.8 nm−1) in the neocortex region of the transgenic brain slices as supported by histology. We observed similar behavior through planar SAXS imaging of an amyloid-like fibril deposit with a 0.8 mm diameter at a known location on a wild type mouse brain. In our SAXS-CT simulations, we found that 33-keV x rays provide increase plaque visibility in the mouse head for targets of at least 0.1 mm in diameter, while in the human head, 70-keV x rays were capable of detecting plaques as small as 2 mm. To increase radiation efficiency, we used a weighted-sum image visualization approach allowing the dose deposited by 70-keV x rays per SAXS-CT slice of the human head to be reduced by a factor of 10 to 71 mGy for gray matter and 63 mGy for white matter. The findings suggest that a dedicated SAXS-CT system for in vivo amyloid imaging in small animals and humans can be successfully developed with further system optimization to detect regions with amyloid plaques in the brain with a safe level of radiation dose.

Publisher

IOP Publishing

Subject

General Nursing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3