Synthetic β-sheets mimicking fibrillar and oligomeric structures for evaluation of spectral X-ray scattering technique for biomarker quantification

Author:

Suresh Karthika,Dahal Eshan,Badano Aldo

Abstract

Abstract Background Archetypical cross-β spines sharpen the boundary between functional and pathological proteins including β-amyloid, tau, α-synuclein and transthyretin are linked to many debilitating human neurodegenerative and non-neurodegenerative amyloidoses. An increased focus on development of pathogenic β-sheet specific fluid and imaging structural biomarkers and conformation-specific monoclonal antibodies in targeted therapies has been recently observed. Identification and quantification of pathogenic oligomers remain challenging for existing neuroimaging modalities. Results We propose two artificial β-sheets which can mimic the nanoscopic structural characteristics of pathogenic oligomers and fibrils for evaluating the performance of a label free, X-ray based biomarker detection and quantification technique. Highly similar structure with elliptical cross-section and parallel cross-β motif is observed among recombinant α-synuclein fibril, Aβ-42 fibril and artificial β-sheet fibrils. We then use these β-sheet models to assess the performance of spectral small angle X-ray scattering (sSAXS) technique for detecting β-sheet structures. sSAXS showed quantitatively accurate detection of antiparallel, cross-β artificial oligomers from a tissue mimicking environment and significant distinction between different oligomer packing densities such as diffuse and dense packings. Conclusion The proposed synthetic β-sheet models mimicked the nanoscopic structural characteristics of β-sheets of fibrillar and oligomeric states of Aβ and α-synuclein based on the ATR-FTIR and SAXS data. The tunability of β-sheet proportions and shapes of structural motifs, and the low-cost of these β-sheet models can become useful test materials for evaluating β-sheet or amyloid specific biomarkers in a wide range of neurological diseases. By using the proposed synthetic β-sheet models, our study indicates that the sSAXS has potential to evaluate different stages of β-sheet-enriched structures including oligomers of pathogenic proteins.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3